
The OpenBSD Packet Filter HOWTO

Wouter Coene

version 20020405.2, generated April 5, 2002
available at http://www.inebriated.demon.nl/pf-howto/

Contents

1 Introduction 3
1.1 Intended audience . 3
1.2 Status . 3
1.3 Copyright and license . 3
1.4 Contacting the author . 4

2 Basic firewalling 5
2.1 Ruleset basics . 5
2.2 More advanced rulesets . 6
2.3 Keeping state . 6
2.4 Breaking from rulesets: the quick keyword 8
2.5 Matching network interfaces 8
2.6 Matching TCP flags . 8
2.7 Sets . 9
2.8 Variable expansion . 10
2.9 Ruleset optimization: skip steps 10
2.10 Putting it all together . 11
2.11 Loading your ruleset . 12

3 Filtering Bridges 13
3.1 Two directions . 13
3.2 Stateful filtering . 13

4 Firewalling tricks 15
4.1 State modulation . 15
4.2 Packet normalization . 15

5 Migrating from IPFilter 17
5.1 head and group are gone . 17

6 Other documentation 18

1

CONTENTS 2

7 Thanks 19

1 INTRODUCTION 3

1 Introduction

The OpenBSD Packet Filter (OpenBSD PF) is the stateful firewall package
that is part of the OpenBSD kernel since OpenBSD 3.0. This document
describes how to set up and manage PF rulesets and NAT mappings.

1.1 Intended audience

The intended audience for this document are system- and network adminis-
trators with at least a basic knowledge of (inter)networking and the network
protocols involved. Knowledge of other firewall systems is not required, but
can help in mastering the more complex topics.

1.2 Status

This document is currently a work-in-progress, so not everything regarding
OpenBSD PF may be covered yet.

Todo list:

• Network Address Translation

• IPv6

• more notes regarding the extensive feature set of the pfctl command

• AuthPF

1.3 Copyright and license

The OpenBSD Packet Filter HOWTO version 20020405.2
Copyright (C) Wouter Coene, 2001, 2002.

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the doc-
umentation and/or other materials provided with the distribution.

1 INTRODUCTION 4

• The name of the author may not be used to endorse or promote prod-
ucts derived from this software without specific prior written permis-
sion.

• This software may not be mass-distributed for sale without informing
the author at least two weeks in advance.

THIS DOCUMENT IS PROVIDED BY THE AUTHOR “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

1.4 Contacting the author

You can contact the Wouter Coene through email at wouter@inebriated.demon.nl,
or via snail-mail:

De Deel 17
3471 EN Kamerik
The Netherlands

2 BASIC FIREWALLING 5

2 Basic firewalling

A firewall is supposed to protect a network from potential attacks originating
from another network. It does this by inspecting packets traveling between
the two networks, and imposing restraints upon the types, targets and even
content of these packets.

This section explains how to set up firewalling using PF. For this section I’ll
use a corporate network and firewall as an example. The network itself will
consist of a TCP/IP network with network address 260.250.1.0/24. There
will be a corporate webserver running on 260.250.1.3, and a firewall with
two network interfaces, xl0 and xl1. The corporate network is connected
to the xl1 interface, and the internet uplink is connected to xl0.

2.1 Ruleset basics

The firewalling component of PF uses a set of rules which describe actions
to be taken for certain packets. These rules are read from a file and loaded
into the OpenBSD kernel using the pfctl command (for more information
on loading your ruleset, see section 2.11).

Such a rule file might look like the following:

block in all
pass in all

Let’s analyze what happens here. The first rule tells PF to block all incoming
packets. Unlike some other firewalls, PF doesn’t stop rule parsing when it
finds a match. Instead, it notes the fact that it is planning on blocking the
packet, and moves on to the next rule.

The next rule tells PF to pass all incoming packets to whatever is their
destination. Again, PF notes the fact that it is planning on passing the
packet, and moves on to the next rule.

Since there is no next rule, PF starts looking at what it was planning to
do. In this case, the last rule that matched told PF to pass the packet, so
it does.

Well, that doesn’t look very useful, so let’s try something more interest-
ing. Let’s allow access to the corporate webserver running at IP address
260.250.1.31. You might try something like this:

1A completely fictional example

2 BASIC FIREWALLING 6

block in all
pass in from any to 260.250.1.3/32

Again, the first rule tells PF to note that it should plan on blocking this
packet unless it matches any other rules.

The second rule tells PF to pass packets that have their destination set
to 260.250.1.3, where the ’/32’ denotes to PF that it should match the
address on the full 32 bits.

But what about return traffic, you might ask. Well, that’s fairly simple,
simply allow traffic from 260.250.1.3 to go anywhere:

block in all
pass in from any to 260.250.1.3/32
pass in from 260.250.1.3/32 to any

2.2 More advanced rulesets

Suppose it is decided that another website will be run on the corporate web-
server, this one containing sensitive corporate information, so it shouldn’t
be accessible from the outside. This website will, contrary to the other one,
run on the non-standard TCP port 8000.

So now you’ll not only have to filter on destination address, but on the TCP
port number as well, to make sure nobody can connect to port 8000 from
the outside and access the sensitive data:

block in all
pass in proto tcp from any to 260.250.1.3/32 port = 80
pass in proto tcp from 260.250.1.3/32 port = 80 to any

As you can see, we’re not only filtering on the port number, we’re also
telling PF to only allow packets of protocol TCP to pass through to the
firewall to the corporate webserver. This is necessary, since the IP protocol
itself doesn’t know about port numbers. Only TCP and UDP can differentiate
between different ports.

2.3 Keeping state

The PF firewall component is capable of remembering what TCP, UDP or
ICMP sessions were created, and can filter packets according to this session
table. This is called keeping state.

2 BASIC FIREWALLING 7

Whenever PF sees a packet match a rule that instructs PF to keep state,
it creates a new entry in the state table based upon the information in
the packet. This results in subsequent packets from the same session being
passed along without going through the rule matching phase.

Keeping state on TCP connections involves the careful checking of TCP se-
quence numbers of packets against the state table, and dropping packets
that don’t match the state of the connection, thus decreasing the possibility
that hosts behind the firewall lacking a good TCP stack implementation are
taken advantage of. When keeping state on UDP sessions, PF allows a single
return packet for each packet matching the rule which creates the state table
entry.

Suppose it is decided that web-browsing should be possible from our cor-
porate network, which requires passing both TCP connections to port 80 as
well as allowing DNS requests on port 53.

Using the PF state engine for this is a safe way of allowing this without at
the same time opening the entire network to outside attacks. While you’re
at it, you might as well use the state engine for the access to the corporate
webserver as well, resulting in more secure access control to that server:

block in all
pass in proto udp from 260.250.1.0/24 to any port = 53 keep state
pass in proto tcp from 260.250.1.0/24 to any port = 80 keep state
pass in proto tcp from any to 260.250.1.3/32 port = 80 keep state

The third rule enables hosts on the corporate network to make connections
to the HTTP port on external hosts, instructing PF to create an entry in its
state table for these connections. The last rule instructs PF to do the same
for connections made from outside hosts to the corporate webserver, thus
making obsolete the rule we needed for return traffic when we weren’t using
the state engine.

Using the state engine might seem like burdening the firewall with extra
load, only slowing down traffic. However, state table lookups under PF are
much faster than ruleset parsing. A typical ruleset of 50 rules takes about 50
rule comparisons, whereas a state table of 50,000 entries, due to its binary
tree structure, takes only about 16 comparisons. This fact, combined with
the added security, makes it more than worth using the state engine even
for the more simple tasks, which could have easily been done without it.

2 BASIC FIREWALLING 8

2.4 Breaking from rulesets: the quick keyword

Sometimes it might be appropriate to have PF immediately stop parsing the
ruleset and do whatever it should do whenever a packet matches a specific
rule. For this, PF has the quick keyword. A matching rule that has the
quick option set will result in the termination of ruleset parsing for the
matching packet.

This is especially useful for protecting your network against spoofed packets,
as the following example shows:

block in all
block in quick from 10.0.0.0/8 to any
block in quick from 172.16.0.0/12 to any
block in quick from 192.168.0.0/16 to any
block in quick from 255.255.255.255/32 to any
pass in all

This ruleset tells PF to immediately drop packets originating from 10.0.0.0/8,
172.16.0.0/12, 192.168.0.0/16 and 255.255.255.255/32. Other pack-
ets are passed through.

This also results in a big performance boost if used appropriately for rules
catching lots of traffic, as PF won’t try to match any subsequent rules.

2.5 Matching network interfaces

It is also possible to match the network interface on which a packet is re-
ceived. Let’s adapt our previous anti-spoofing example to this, keeping our
corporate network structure in mind:

block in all
block in quick on xl0 from 10.0.0.0/8 to any
block in quick on xl0 from 172.16.0.0/12 to any
block in quick on xl0 from 192.168.0.0/16 to any
block in quick on xl0 from 255.255.255.255/32 to any
pass in all

2.6 Matching TCP flags

To enable the blocking of invalid packets, you can also instruct PF to filter
on TCP flags using the flags keyword, followed by a list of flags to match
on, an optional forward slash, and an optional flag mask.

2 BASIC FIREWALLING 9

PF will, for every TCP packet, first clear everything but the flags that were
specified in the mask, and then match on the flags that should be matched
on. So saying ’flags S/SA’ instructs PF to first mask out everything but
the SYN and ACK flags, and then check if SYN is set.

The following flags are recognized:

F : FIN, for closing connections

S : SYN, for opening connections

R : RST, for connection resets

P : PSH, for making sure all data has arrived

A : ACK, for acknowledgement packets

U : URG, indicating this packet is urgent

For example, a packet requesting a new connection sets only the SYN flag,
and a packet acknowledging a connection sets both SYN and ACK, whereas a
packet indicating a refused connection sets both ACK and RST.

Using an invalid combination of TCP flags is a popular way to secretly scan
hosts for open ports. Using the flags keyword, you can defend your sys-
tem against these secretive scans, and force port scanners to use scanning
methods that are more easily detectable.

Let’s take our state-keeping example from earlier in this HOWTO. We want
to enforce that only TCP packets, which of the SYN and ACK flags only have
SYN set, get an entry in the state table:

block in all
pass in proto udp from 260.250.1.0/24 to any port = 53 keep state
pass in proto tcp from 260.250.1.0/24 to any port = 80 \

flags S/SA keep state
pass in proto tcp from any to 260.250.1.3/32 port = 80 \

flags S/SA keep state

This should prevent the port scanning techniques mentioned above from
passing our firewall.

2.7 Sets

It is possible to, instead of specifying a single source or destination host,
specify a set of hosts. This is done by enclosing the hosts in curly braces,
and by separating them by commas.

2 BASIC FIREWALLING 10

So if your old ruleset had rules in it like this:

block in quick on xl0 from 10.0.0.0/8 to any
block in quick on xl0 from 172.16.0.0/12 to any
block in quick on xl0 from 192.168.0.0/16 to any
block in quick on xl0 from 255.255.255.255/32 to any

You can replace them with a single rule:

block in quick on xl0 from { 10.0.0.0/8, 172.16.0.0/12, \
192.168.0.0/16, 255.255.255.255/32 } to any

This can also be done for interfaces, protocols, and ports. The pfctl pro-
gram will split up such rules into one rule for each combination, so PF can
optimize your ruleset with the technique described in section 2.9. Addition-
ally, it increases readability by orders of magnitude for large sets of hosts,
interfaces, protocols or ports.

2.8 Variable expansion

PF also supports variable expansion, modelled after that of the shell. Vari-
ables are defined by assigning them a value, and expanded by prepending
the variable name with a dollar sign (’$’):

webserver="260.250.1.3/32"
pass in from any to $webserver port = 80 keep state

The value you want to assign to the variable must be quoted.

2.9 Ruleset optimization: skip steps

Unlike IPFilter, OpenBSD PF doesn’t support the group keyword. The
OpenBSD PF developers have chosen a scheme called skip steps, in which
rulesets are optimized automatically.

Consider a ruleset looking like this:

block in quick on xl0 from 10.0.0.0/8 to any
block in quick on xl0 from 172.16.0.0/12 to any
block in quick on xl0 from 192.168.0.0/16 to any
block in quick on xl0 from 255.255.255.255/32 to any

2 BASIC FIREWALLING 11

For each incoming packet, this ruleset is evaluated from top to bottom.
Imagine a packet is received on interface xl1. The first rule is evaluated,
but is found not to match. Now, since the other rules also apply to interface
xl0, PF can safely skip these rules.

When you load a ruleset the following parameters are compared between
successive rules (in this order):

1. interface

2. protocol

3. source address

4. source port

5. destination address

6. destination port

For each rule, PF automatically calculates a so-called skip step for each of
these parameters, which tells PF how many successive rules have the same
value for the parameter.

If an incoming packet on interface xl1 is matched against our example rule-
set, PF notices that the packet’s incoming interface didn’t match the one in
the first rule, and since the next 3 rules also mention that interface, it skips
these rules altogether.

So if you’d like to maximize your ruleset performance, you should sort your
ruleset by interface, by protocol, source address and port, and finally by
destination address and port, in that order.

2.10 Putting it all together

Let’s put together all that we have learned about PF using our earlier ex-
ample of the corporate network. The following ruleset is the result:

set up some variables
external="xl0"
internal="xl1"
corporate="260.250.1.0/24"
webserver="260.250.1.3/32"
private="{ 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, \

255.255.255.255/32 }"

2 BASIC FIREWALLING 12

block by default
block in all

allow web-browsing from the corporate network
pass in quick on $internal proto udp from $corporate to any \

port = 53 keep state
pass in quick on $internal proto tcp from $corporate to any \

port = 80 flags S/SA keep state

drop spoofed packets
block in quick on $external from $private to any

allow access to the corporate webserver from the internet
pass in quick on $external proto tcp from any to $webserver \

port = 80 flags S/SA keep state

There you have it, a secure firewall. Of course, this is not the only thing
neccesary for securing something like a corporate network. But for a first
line of defense, it’s doing its job quite well.

2.11 Loading your ruleset

Once you’re happy with your ruleset, save it as /etc/pf.conf, then either
reboot your machine, or execute

pfctl -R /etc/pf.conf

To have your rule set loaded automatically during the OpenBSD boot se-
quence, remember to set pf=YES in /etc/rc.conf.

3 FILTERING BRIDGES 13

3 Filtering Bridges

A bridge, or repeater, is a network device that connects two or more network
segments together. It is commonly a simple box, which just repeats any
incoming packets on the other network segment(s). However, an OpenBSD
server can also be used for bridging, which makes it possible to use PF to
filter traffic between the network segments.

This section explains how to set up a filtering bridge using OpenBSD PF.
The network used in the examples is a university network, IPv4 network
address 10.0.0.0/8, consisting of a large number of student workstations,
a webserver on 10.0.0.1/32, and a shell server on 10.0.0.2/32.

For security reasons, the university staff would like to separate the network
segment the students connect to from the server network segment, and filter
the traffic in between, with minimal changes to the network topology.

The decision is made to use an OpenBSD server, with the student network
segment connected to interface xl0, and the server network segment con-
nected to interface xl1.

3.1 Two directions

Packets traversing the bridge go through PF twice: they go in through one
interface, and come out through the other. So our ruleset must allow both
incoming and outgoing traffic, causing us to start with the following ruleset:

pass in on xl0 any
pass out on xl0 any
pass in on xl1 any
pass out on xl1 any

This will allow traffic received on both xl0 and xl1 to enter the bridge, and
allow said traffic to be sent to the correct network segment.

3.2 Stateful filtering

The OpenBSD Packet Filter has this really nice feature called keeping state,
described in section 2.3, which can be used in the example network to in-
crease the security of the server network segment.

However, there’s one thing we have to keep in mind when using stateful
filtering: the entries in the state table are indexed by a key consisting of the

3 FILTERING BRIDGES 14

source- and destination addresses and TCP ports, where the order of these
two pairs is relevant. If an outgoing packet from A to B creates an entry in
this state table, PF will pass outgoing packets from A to B, and incoming
packets from B to A. It will still block outgoing packets from B to A, and
incoming packets from A to B, which in the non-bridged case is perfectly
clear and obvious.

However, when using state keeping on a bridge, the packet goes through PF
twice; it is an incoming packet on one interface, and an outgoing packet on
the other.

There are two solutions to this problem. One is to create two entries in
the state table for each connection, using two rules with the keep state
option. This, however, increases the load on the bridge server, and is not
recommended, since the other option is fairly simple and elegant:

From the perspective of PF, packets go through the bridge twice. If you’re
looking at one interface, you’ll see exactly the same traffic, only the direction
is reversed. Therefore, we can ignore one interface and do all the filtering
on the other.

We’d like to keep state on connections to both the webserver and the shell
server, and since we trust the student network the least2, we’ll filter on the
xl0 interface, simply passing along all traffic on the xl1 interface:

some variables
web="10.0.0.1/32"
shell="10.0.0.2/32"

allow all traffic traversing xl1
pass in quick on xl1 all
pass out quick on xl1 all

block traffic on xl0 by default
block in on xl0 all
block out on xl0 all

allow connections to the web- and shell server
pass in quick on xl0 proto tcp from any to $web \

port = 80 flags S/SA keep state
pass in quick on xl0 proto tcp from any to $shell \

port = { 22, 23 } flags S/SA keep state

2A purely psychological reason

4 FIREWALLING TRICKS 15

4 Firewalling tricks

To increase the security of the host(s) it is supposed to protect, OpenBSD
PF has a number of unique features to correct mistakes in TCP/IP stack
implementations, which are described in this section.

4.1 State modulation

To ensure proper delivery of TCP packets and to prevent connection hijack-
ing, the TCP protocol utilizes a sequence numer scheme in which a random
initial sequence number (ISN) is chosen at the start of a connection, which is
incremented for each byte transmitted. However, many popular TCP imple-
mentations use a very poor random number generator for generating these
ISNs3, thus making it more likely TCP connections originating from such
systems could be taken over by malicious people.

That is why the OpenBSD PF developers chose to add state modulation.
This involves generating a more random initial sequence number for connec-
tions matching a PF rule, and translating the sequence numbers of packets
passing the firewall from the ISN generated by the host to the ISN generated
by the firewall and vice-versa.

This can be done by adding the modulate state keyword to PF rules, such
as this one, protecting the corporate network defined in the previous chapter:

pass in quick on xl1 proto tcp from 260.250.1.0/24 to any \
flags S/SA modulate state

The modulate state option implies keep state, described in section 2.3.

4.2 Packet normalization

Since some IP stacks don’t correctly implement IP packet defragmentation,
OpenBSD PF provides the scrub directive. If a scrub rule matches a packet,
the PF normalization component makes sure the packet is defragmented and
completely stripped of all abnormalities before it is sent along to its final
destination4.

3For more information about ISN generation, along with a survey of the ISN generation
on some popular operating systems, see http://razor.bindview.com/publish/papers/

tcpseq.html
4At the time of writing, it is not entirely clear to me how this interacts with state

keeping. Could any of the PF developers comment on this?

4 FIREWALLING TRICKS 16

Normalizing all incoming network traffic would require a rule such as this:

scrub in all

Using the scrub directive uses quite an amount of server resources, so its use
should be limited to protecting only the weak TCP/IP stack implementations.

Additional options that apply to the scrub directive are:

no-df clear the don’t fragment bit from a matching IP packet.

min-ttl number enforce a minimum time to live for matching IP packets,
dropping packets that don’t match the requirement.

5 MIGRATING FROM IPFILTER 17

5 Migrating from IPFilter

The ruleset model OpenBSD PF uses was modelled after that of IPFilter.
There are also quite a few differences, which this section tries to document.

5.1 head and group are gone

The head and group keywords, which were used in IPFilter to group a
number of rules, are no longer needed under OpenBSD PF. If you used to
use head and group, you’ll have to manually re-order your rulesets so they’ll
work under OpenBSD PF.

OpenBSD PF has an automatic scheme for ruleset optimization, called skip
step. See section 2.9 for more information.

6 OTHER DOCUMENTATION 18

6 Other documentation

There are a number of sources for information on OpenBSD PF and firewalls
in general available on the Internet. Here’s a short summary of stuff that
might be interesting:

http://www.benzedrine.cx/pf.html The original homepage of what is
now OpenBSD PF.

http://www.obfuscation.org/ipf/ The IPFilter HOWTO. Though the
HOWTO you’re reading right now tries to be as complete as possi-
ble with regard to OpenBSD PF, it might be interesting to look at
OpenBSD PF’s roots too.

http://www.linuxdoc.org/HOWTO/Firewall-HOWTO.html The Linux Fire-
wall and Proxy HOWTO, which also covers the subject of setting up
user-space proxies such as Squid and SOCKS. Written for Linux, but
might be of interest to OpenBSD users as well.

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&format=html
OpenBSD manual page on the pfctl program.

http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&format=html
OpenBSD manual page on the format of OpenBSD PF rulesets.

http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&format=html
OpenBSD manual page on the pf device. Mainly of interest for devel-
opers.

7 THANKS 19

7 Thanks

The author would like to thank the following people for providing help with
some of the more complicated subjects, for clarifying some of the internal
workings of OpenBSD PF, for pointing out errors or mistakes in previous
versions of this document, or generally for making suggestions (in alphabet-
ical order):

• Matthew Clarke <Matthew Clarke@mindlink.bc.ca>

• Mike Frantzen <frantzen@w4g.org>

• Markus Friedl <markus@openbsd.org>

• Artur Grabowski <art@blahonga.org>

• Daniel Hartmeier <daniel@benzedrine.cx>

• Erik Liden <erik@ipunplugged.com>

• Rod Whitworth <listener@witworx.com>

• Jim Zajkowski <jim@jimz.net>

